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Abstract—The stringent climate targets being set on global and
local levels underscore a need to understand how individuals
make decisions that determines environmental outcomes. Tra-
ditional mean-field and two-strategy frameworks often overlook
individual-level cognitive processes, dynamic risk perception, and
evolving social norms that drive real-world behavioral change. To
address these gaps, we develop a spatially explicit agent-based
model (ABM) in which heterogeneous agents choose between
climate-friendly and degradative actions based on adaptive utility
functions incorporating intrinsic environmental preference, local
social pressures, and perceivable ecosystem feedback. We inte-
grate novel sub-models for dynamic risk-perception thresholds,
shifting-baseline effects, and memory-based spillover. We also
perform a mean-field analysis alongside a PAWN sensitivity
analysis. Phase plots and clustering analyses reveal critical tipping
points and emergent patterns — ranging from multi-stability
and oscillatory regimes to scale-free cluster formation — under
varying policy levers such as varying rationality and rate of
adaptation to the environment. Our results quantify the threshold
levels of key parameters required to shift a socio-ecological system
from low-cooperation, degraded equilibria toward sustainable,
high-cooperation trajectories, providing actionable insights for
designing robust, climate-positive interventions.

I. Introduction

In recent years, global climate policy has coalesced around
ambitious national targets for greenhouse-gas reductions. Re-
cently, the European Union’s Fit for 55 legislative package
legally mandated a reduction in net GHG emissions of at
least 55 percent by 2030 relative to 1990 levels, paving the
way for climate neutrality by 2050 [1]. With other major
emitters setting stringent targets to achieve a positive climate
outcome, it is increasingly important to understand and explore
the complexity and dynamism underlying human behaviour
in social-ecological systems. Insights into how such policy
targets translate into individual and collective environmental
outcomes can be achieved by modeling the coupled-dynamics
of human decision-making and ecosystem processes using
Agent-Based Models (ABMs).

Although Kraan et al. (2019) [2] developed ACT — an
ABM that departs from mean-field assumptions — to explore
how heterogeneity, leadership, and local network structures
drive critical transitions in low-carbon energy systems, it does
not account for dynamic environmental feedback on individual
risk perception or the evolving influence of social norms.
Conversely, Tilman et al. (2020) [3] formulated a general
eco-evolutionary game framework that captures how strategic
choices and environmental states mutually shape one another.
However, its mean-field, two-strategy abstraction overlooks

agent-level cognitive processes such as shifting baselines, plu-
ralistic ignorance, and memory-based spillovers. It also does
not consider network heterogeneity, that is crucial to real-world
decision-making under climate change. Furthermore, previous
critiques of ecological ABMs call for the integration of formal
decision-making theories to enrich the psychological founda-
tion of these models [4]–[6]. Thus, a key research gap remains
in integrating these nuanced psychological factors into eco-
evolutionary models to better represent how diverse individual
decision rules, social influences, and dynamic risk perceptions
jointly determine collective environmental outcomes.

Fig. 1: Schematic representation of the interactions between an
agent, its neighbors and its environment in a single timestep.
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In this paper, we aim to investigate the following research
questions:

1) How do the steady-state equilibria differ in the coupled
socio-ecological model?

2) What role do social-influence structures play in emergent
cooperation?

3) What dynamical regimes appear in the ABM but are ab-
sent (or smoothed-out) in its mean-field approximation?

We begin in Section II by surveying foundational work on
social norms, coupled human–environment systems, and agent-
based climate models. Section III introduces our model and
its mean-field analysis, complete with utility functions and dy-
namical equations. Section IV outlines our PAWN sensitivity
analysis, identifying the parameters that most shape outcomes.
Section V presents phase plots and critical transition analyses,
revealing tipping points and cluster formation. It also discusses
the implications of our findings, and their relation to the mean-
field model. Finally, Section VI concludes with directions for
future exploration.

II. Related work
A. Climate-related behavioural factors

Despite the ever-increasing severity of climate change,
both individual and population-level environmental behaviour
remain complex and difficult to predict. Existing research
into the factors influencing climate-related decision-making is
highly interdisciplinary, with theoretical and empirical stud-
ies spanning environmental science, psychology, economics,
tourism, agriculture, mathematics, and computational sci-
ence. Central to many theoretical studies is the Theory of
Planned Behaviour [7]–[9], a general theory describing human
decision-making as a combination of individual preferences,
social norms, and ability/readiness to take a given action.

The impact of social norms on climate-related behaviours
has been widely demonstrated theoretically [10]–[12], em-
pirically [9], [12], [13], and computationally [8], [14]. A
double-edged sword, social norms can serve both to deter and
to sustain climate-friendly behaviour. Historical inaction on
climate mitigation can limit the adoption of climate-friendly
behaviours even when this is favoured by current individual
preferences — a phenomenon known generally as pluralistic
ignorance [12], [15], [16].

Individual perceptions of climate-change severity and risk
are shown to reinforce willingness to adopt climate-friendly
behaviour when environmental degradation is readily visible
(e.g., severe weather events, or agricultural impacts) [17]–[22].
A stated willingness to adopt, however, does not necessarily
translate to realised behavioural change [23]–[25]. Uncertainty,
risk perception, and trust in science are demonstrated to
influence decision-making [26], [27], however, their effects can
be nullified by the prevalence of opposing social norms. Indi-
vidual optimism regarding the effectiveness of climate action
has also been shown to slow its adoption [28]. Computational
studies have demonstrated an increased likelihood of behaviour
consensus resulting from local interactions [29].

The influence of perceived climate risk on individual prefer-
ences for climate-friendly behaviour is not necessarily linear.

Several studies [10], [30] argue that individuals are most
likely to adopt climate-friendly behaviours when environmen-
tal degradation is visible, but only when it is also perceived as
reversible. Climate-friendly behaviour is de-prioritised when
the environment is perceived as healthy [29], [31], and its
efficacy is questioned when the environment is sufficiently
degraded [18], [32]. Additionally, the shifting baseline effect
suggests a gradual decline in perceived climate change severity
— even when the true state continues to worsen — due to the
establishment of a new status quo [33]–[36]. External factors
such as inequality further limit adoption [37], [38].

Finally, present-day behavioural preferences of individuals
can directly influence their future behaviour. Examples include
the green spillover and green licensing effects, which suggest
that current climate-friendly actions can positively or nega-
tively reinforce future behaviour, with individual perception
theorised as a mediator [13], [39]–[44].

B. Coupled human-environment systems

As discussed in the previous section, perception of envi-
ronmental degradation is broadly-accepted as contributing to
individuals’ decision-making regarding behaviours relating to
climate change. Recent years have seen an acceleration of
research into Coupled Human-Environment Systems (CHES),
studying the feedback loop that arises when one considers
how agents’ actions in turn affect the environment [45]–
[49]. Building on prior work by Weitz et al. (2016), [50],
Tilman et al., (2020) [3] proposed an evolutionary game
theoretic framework for studying common resource dilemmas
with dynamic environments. This work has been extended
to examine interplay with different agents behaviours [51],
implications for sustained climate action, and risks such as
tipping points [30], [49].

C. Agent-based climate behaviour modelling

Agent-based research into climate-related behaviour is a rich
and expanding landscape, and as such we focus here on work
identified as most relevant to the research question outlined
in I. For a more complete overview, we invite the reader to
consult one of several recent surveys of the wider field [8],
[52], [53].

The modelling framework introduced by Tilman [3] is
not inherently agent-based, but has served as a launchpad
for ABM studies with heterogeneous attributes [51]. ABM
studies of coupled human-environment system ABM studies
also feature opinion dynamics [54], [55], as well as the effects
of delayed feedback on equilibria stability [56]. Numerous
studies examine the effects of social norms on climate-related
behaviour, including investigating energy consumption [57],
pluralistic ignorance [58], evolving agent preferences [59], or
critical transitions in public support for climate mitigation [2],
[60], [61].

The interdisciplinary insights, expounded in the previous
sections, provide a basis for an ABM that operationalizes
the Theory of Planned Behaviour by balancing intrinsic envi-
ronmental preferences, CHES-inspired social-norm pressures
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(including pluralistic ignorance), and perceived action feasi-
bility. Dynamic risk-perception thresholds produce peaks in
eco-actions only when environmental harm is both visible
and reversible, while shifting-baseline effects progressively
diminish engagement. Memory-based spillover and licensing
mechanisms allow past behaviours to reinforce or undermine
future cooperation, and coupled human–environment feedback
loops tie collective actions back to changes in the envi-
ronmental stock. Incorporating heterogeneity in social influ-
ence, cognitive parameters (memory length, forecasting ability,
rationality), and network topology yields emergent patterns
such as cooperator clustering, oscillatory engagement cycles,
multi-stable equilibria, and ecological tipping points between
collapse and recovery.

III. Theory

We developed an agent-based model for human decision-
making in a dynamic environment, in which individuals’
behavioural choices are both informed by the environment and
affect the environment. In this section we outline fundamental
model mechanics, and summarise key analytical results from
our corresponding mean-field analysis. A complete model
description is provided in ODD-D format in Appendix A,
followed by the mean-field derivations in Appendix B.

A. Environmentally-influenced decision-making

Consider a population of k ∈ N individuals, N =
{1, . . . , k}, who repeatedly choose between adopting Climate-
friendly (C) or Degradative (D) behaviours. An individual
i’s decisions depend on their own perceptions of both the
environment (nt

i) and the social norms imposed by their
neighborhood of influence (ai

t).1 The former can amplify an
individual’s preference for climate-friendly behaviour when
the environment is viewed as damaged but reversible, but also
dampen it when the environment is particularly healthy [10],
[30]. Social norms provide stability in decision-making via the
status quo, with potential to both slow and sustain climate-
friendly behaviour [9]–[13]. We model an agent i’s decisions
using a discrete-choice logit model, with homogeneous ratio-
nality parameter λ, and representative utility Vi,

Vi(C) = (1 − wi) · si − wi · (1 − ai)2

Vi(D) = (1 − wi) · (4 − si) − wi · (1 + ai)2 (1)

Where si ∈ [0, 4] is i’s level of preference for climate-
friendly behaviour and wi ∈ [0, 1] is a static attribute which
moderates the relative contributions of individual preference
and social pressures to i’s decisions. The probability that i
chooses an action a ∈ {D, C} is given by:

P(at
i = a) = exp(λVi(a))

exp(λVi(C)) + exp(λVi(D)) (2)

1We henceforth omit the t superscript for visual clarity, except where doing
so would cause ambiguity.

B. Coupled human-environment dynamics
Agents’ action preferences and local environment states

vary with respect to one another according to the dynamical
system in Equations 3 and 4 respectively. The function σ is
the logistic map, σ : n 7→ 4n(1 − n). The relative rates at
which the environment is restored/degraded, and preference for
cooperation/defection increase are set by parameters β+

n , β−
n

and β+
s , β−

s , with the overall environment and preference
update speeds defined by γn and γs.

1
γs

dsi

dt
= β+

s · σ(nt
i)(4 − st

i) − β−
s · (1 − σ(nt

i))st
i (3)

1
γn

dni

dt
= β+

n · (1 − nt
i)αt

i − β−
n · nt

i(1 − αt
i) (4)

All experiments in this report (with the exception of the
sensitivity analysis) take β+

n = β−
n = β+

s = β−
s = 1

C. Mean-field model
We derive expressions for the expected mean action its

temporal dynamics via a mean-field analysis, making the
following simplifying assumptions:

1) wi = E[wi] := w for each agent i ∈ N ,
2) dP

dt = 0 for each i ∈ N , such that st
i = s, and

3) P(ai, aj) = P(ai) ·P(aj) for each pair of agents i, j ∈ N .
Expanding subterms in Equation 2 yields a simplified expres-
sion for an agent’s expected action:

E[ai] = tanh(λ[(1 − wi)(si − 2) + 2wiai]) (5)

We extend this to derive a fixed-point expression for the
population-level expected action, m := E[a],

m = tanh(λ[
z︷ ︸︸ ︷

(1 − w)(s − 2) + 2wm]) (6)

which has between 1 and 3 solutions, at most two of which
are stable. The three-solution case corresponds to pluralistic
ignorance, where the influence of social norms is sufficient
to sustain a behavioural state different from the mean agent
preference. For this to occur, it is necessary (though not
sufficient) that 1

2λw < 1 — that is, the expected social
pressure or rationality must be sufficiently large. We obtain
the dynamics of m as the time derivative of Equation 6:

dm

dt
= (1 − w)λ sech2(λzt)

1 − 2λw sech2(λzt)
· ds

dt
(7)

IV. Sensitivity Analysis

When the model has multiple parameters, the sensitivity
analysis is key to distinguishing influential parameters from the
ones that don’t significantly impact the model’s behavior. This,
in turn, can be used to simplify the model by removing such
parameters. Additionally, sensitivity analysis can help identify
critical or otherwise interesting regions in the space of the
input factors. A suitable sensitivity analysis must be chosen
with careful attention to the characteristics of the model output.
Failing to do so can undermine the reliability of the results.
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As model input, we chose to investigate the following pa-
rameters: Grid length, rationality (λ), memory size, adaptation
rate (γs), neighborhood radius, and environment recovery rate
(β+

n ). The range of values used for parameter sampling is
presented in Table I.

Parameter Min. value Max. value Type

Grid length 5 50 integer
Rationality 0 10 float
Memory size 2 10 integer
Adaptation rate 0.001 0.05 float
Neighborhood radius 0 1 integer
Recovery rate 0.5 2 float

TABLE I: Range of parameter values used in the PAWN
sensitivity analysis.

Following the procedure for global sensitivity analysis
parameter space was sampled, and model simulation was
performed in order to gather output statistics. Samples were
generated using Saltelli’s extension of the Sobol sequence
(as implemented in the SALib Python package). For our
simulation, the number of samples was set to N = 2048
and the number of parameters D = 6. This results in
N(D + 2) simulations [62]. Models were re-run 5 times for
each parameter set, with different random seeds to account for
stochasticity, for a total of 81920 simulations:

(2048 · (6 + 2)) · 5 = 81920

We chose 6 measures of the model output:
• Mean environment - average state of the environment at

the final time step, computed over all cells of the 2-D
lattice.

• Mean action - average agent’s action at the final time step,
computed over all cells of the 2-D lattice.

• Pluralistic ignorance - capturing how much an agent’s
behavior is distorted due to the misperception of social
norms.

• Cluster count - number of healthy environment clusters
at the final time step. Cell was considered healthy if the
mean value of the environment was above 0.6.

• Peak frequency - the frequency at which oscillations have
the highest average power within its full-width.

• Dominant frequency power - measure of the oscillation
mode with the largest magnitude or impact on system
stability.

To ensure measurements are taken at system equilibrium, we
run each model for 2000 timesteps, which our testing shows
to be sufficient in most cases.

The empirical distributions of the output metrics are shown
in Figure 2. These types of distributions are not suitable for
variance-based sensitivity methods because such methods rely
on variance being a meaningful measure of output uncertainty.
However, this assumption does not hold for multi-modal or
highly skewed distributions. For this reason, we chose to use
the PAWN method for our sensitivity analysis. Unlike variance-
based approaches, PAWN is a density-based method that can
be applied effectively to all types of output distributions,
including those that are highly skewed or multi-modal [63].
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Fig. 2: Empirical output distributions as observed across all
samples.

The results of the PAWN sensitivity analysis are shown
in Figure 3. Each row corresponds to an output metric of
the model, while each column represents one of the input
parameters. The values in the heatmap indicate the importance
of each parameter for the corresponding output.

Several clear patterns emerge. Mean environment and peak
frequency are most influenced by memory size. Mean action
is primarily affected by recovery rate, and the same is true for
Pluralistic ignorance. Cluster count and dominant frequency
power are most influenced by adaptation rate.

Neighborhood radius has minimal influence on any of the
selected output metrics, indicating that vision structure has
limited impact on the system’s overall behavior. This may be
caused by the fact that only two values of radius are available
in the model, one for the Moore neighborhood and one for the
full grid. Similarly, grid length shows low sensitivity across
most outputs, making it the second-least impactful parameter.
Overall, this suggests that the spatial structure of the grid plays
a relatively minor role compared to other parameters.

V. Results & Discussion
A. Phase Plots

By plotting the continuous values of rationality λ and the
rate of change of action preference γs on heatmaps of different
outputs, we are able to observe general behavioral transition
points that may act as critical phase transitions of the system.

The model setup specified in Figure 4 for the experiment
without dynamic action preference values nor neighborhood
action prediction in Figure 4a shows how the base model
expresses oscillatory behavior through Fourier analysis of the
dominant oscillation power. No critical transition exists in this
behavior, but we generally see how as rationality approaches
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Fig. 3: First-order PAWN sensitivity indices.

0, rational model dynamics become overshadowed by random
discrete choices, reflecting in the Fourier analysis as a lack
of any oscillation and in the environmental status as random
noise centered around 0.5. As the rationality increases, we
observe how the natural feedback of environment status and
probabilistic agent actions creates noisy periodic behavior.

(a) No neighborhood predictor (b) Linear neighborhood predictor

Fig. 4: Fourier oscillation strength analysis for non-dynamic
action preference, single radius neighborhood, and 1.0 peer
pressure coefficient for all agents

Modifying this same setup to include a linear regression
predictor sub-model over neighbors’ past 10 actions in Fig-
ure 4b shows how a predictive model adds ’momentum’ to
neighbors’ action influence by smoothing short-term fluctua-
tions and reinforcing established behavioral trends, reducing
the sudden social pattern shifts that exist in the non-predictive
averaging algorithm. This new tendency causes oscillations to
be dampened as rationality increases with a notable exception
around λ ≈ 1.25.

Further exploration shows the cause of the spike by looking
at the parameters used in Figure 5a, a setup which uses a peer
pressure coefficient initialization of random values between 0.0
and 1.0 to create a smooth transition across rationality instead
of the uniform 1.0 across all agents. This may mean that
the "momentum" expressed by the neighborhood prediction
sub-model creates a sudden spike in environmental status

when all agents place equal weight on social pressures, but
a randomized initialization reduces this by adding noise to the
agent parameter.

(a) Linear neighborhood pre-
dictor, no dynamic action pref-
erence

(b) Dynamic action preference,
no neighborhood predictor sub-
model

Fig. 5: Fourier oscillation strength analysis for single radius
neighborhood, and random uniform peer pressure coefficient
between [0.0, 1.0] for all agents

In these previous cases, we’ve observed oscillations of
system-wide behavior, but no emergent local behaviors or crit-
ical phase transitions. The introduction of the dynamic action
preference sub-model reveals complex, parameter-dependent
behaviors, as shown in Figure 5b.

Qualitatively, the adaptive model has three distinct sections:
• A diagonal spike in oscillation strength
• A "square" of oscillation activity in the range greater than

γs ≈ 0.08 and λ ≈ 2.0
• A distinct separation of low and high oscillation within

the "square", divided by the diagonal.

Fig. 6: Environmental status time series of γs = 0.01 with dy-
namic action preference, no neighbor prediction, single radius
neighborhood, and random uniform peer pressure coefficient
between [0.0, 1.0] for all agents

By selecting a specific value of γs = 0.01 and taking the
average environmental status output at 2000 time steps in
Figure 6, we begin to see the possible distinctions between
each section of the heatmap. The darkened portion of the
"square" with (λ = 3.0) represents seemingly stable oscil-
lations with very little variance, while the diagonal portion
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(λ = 4.7) is an unstable oscillation with large variance. The
bright yellow section indicates a high oscillation strength,
which is caused by the singular large spike that collapses into
an equilibrium (λ = 5.5, 6.5), while the surrounding areas of
0 oscillation strength are areas where no significant oscillation
occurs before reaching a non-zero equilibrium (λ = 1.0).

This is further clarified by Figure 7a, where the final
environmental state at time 1000 reaches a positive equilibrium
to the left of the "square", a zero equilibrium above the
diagonal, a cyclical equilibrium below the diagonal, and noisy
oscillations on the diagonal.

(a) 1.0 social pressure weight for
all agents

(b) Random social pressure
weight for all agents

(c) Environment cluster formation
with 1.0 social pressure weight for
all agents, γs = 0.009 and λ =
3.2

(d) Environment cluster forma-
tion with random social pressure
weight for all agents, γs = 0.004
and λ = 6.0

Fig. 7: Environmental status at time step 1000 for an dynamic
action preference, no neighborhood action prediction, and
single radius neighborhood

If we visualize these noisy oscillations along the diagonal
in Figure 7c, we find that the system begins to express some
emergent clustering behavior, where portions of the population
stabilize on negative environmental status and negative action,
while the others continuously oscillate their decision-making
erratically.

In the case where agents’ place non-uniform weight on
social influence, Figure 7b expresses a similar influence as
was observed in Figure 5a, where-in the original uniform
influence of 1.0 created large spikes in oscillatory behavior,
which are no longer present in the new model. Indeed, a
heatmap of dominant oscillation strength will show near-zero
values across the grid space, which compared to Figure 5b,
has been dampened drastically.

By then merging the predictive neighborhood action sub-
model and the dynamic action preference sub-model, we
observe how the neighborhood prediction portion seems to

reinforce oscillation behavior with increasing rationality in
Figure 8a when compared to Figure 7b, which causes the
model with constant social pressure weights to stop moving
towards a 0 equilibrium in Figure 8b when compared to
Figure 7a.

(a) Random social pressure
weight for all agents

(b) 1.0 social pressure weight for
all agents

Fig. 8: Environmental status at time step 1000 for an dynamic
action preference, neighborhood action prediction, and single
radius neighborhood

Figure 9 provides some evidence of criticality at γs ≈ 0.004.
The phase plot in Figure 9a shows three distinct regimes when
varying memory count mem and rationality λ: when λ is
very low (< 0.5), the equilibrium environmental state stays
around neutral (n∗ ≈ 0.5) regardless of memory; when λ
is high but memory is short (mem < 40), the environment
collapses (n∗ < 0.2); and when both λ and m exceed their
respective thresholds (λ large and mem > 60), the system
rapidly transitions to a healthy state (n∗ > 0.8), with the
critical boundary between collapse and recovery tracing a
downward-sloping curve in the (mem, λ) plane.
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Fig. 9: Phase diagrams of equilibrium environment state when
varying memory count (mem) of agents and rationality λ.
Figures (a) and (b) compares equilibrium environment state
when agents adapt their action preference at slow rate (γs =
0.004) to when agents adapt at a faster rate (γs = 0.01).

Notably, small changes in either parameter near this bound-
ary produce large shifts in the long-run environmental out-
come, reflecting a tipping-point behavior. Additionally, the
steepness of the transition becomes more pronounced at higher
memory lengths, underlining how accumulated social informa-
tion sharpens the collective move toward cooperation.
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At higher action preference adaptation rate (γs = 0.01),
we observe (Figure 9b) that the agents prefer to cooperate
and choose the action that prevents the environment from
collapsing, even for varying values of memory count and
rationality. Phase diagrams for intermediate values of γs show
this transition but the figures have not been included here for
the sake of brevity.

B. Behavior at Critical Phase Transition
Phase plots offer a qualitative understanding of the model’s

behavior by exploring regions of the parameter space that
exhibit large-scale dynamics. These visualizations help reveal
unique system behaviors, such as the phase transitions and
emergent clustering patterns observed in the dynamic action
preference experiments.

For example, in Figure 7b, a distinct phase transition con-
sistently appears which coincides with observable clustering
behavior in Figure 7d. To locate the point at which this critical
transition occurs, we can identify the steepest gradient from
a heatmap slice in Figure 10a, followed by an analysis of the
distribution of cluster counts near this critical point, as shown
in Figure 10b.

(a) Environmental status
slice at γs and λ = 4.0

(b) CCDF of cluster number log-
log scale γs = 0.0042 and λ = 4

Fig. 10: Dynamic action preference, no neighborhood action
prediction, single radius neighborhood, and random social
pressure weights for all agents

In this model configuration featuring dynamic action prefer-
ence without neighborhood action prediction, the cluster count
distribution appears visually distinct from the fitted power-law
with exponent α = 28.25 (see section C). However, statistical
analysis supports that the power-law is a good fit for values
above xmin = 120, where the distribution passes a significance
test with p = 0.002. This visual mismatch is expected in
empirical power-law distributions, as they often deviate at
lower values due to finite-size effects, truncation, or under-
sampling. The portion of the distribution that does conform to
power-law scaling suggests that the system self-organizes near
the critical regime. This supports the presence of scale-free
clustering behavior, as seen in Figure 7b and Figure 10a.

The phase plot in Figure 8a adds linear neighborhood action
prediction with a resulting distinct phase transition similar
to Figure 7b. By once again taking the slice in Figure 11a
and identifying the critical point λ = 0.0048, we get unique
clustering behavior that wasn’t observable in the previous
experiments — larger zero-environment red clusters continue
to exist alongside oscillations in the surrounding non-red cells,

but now small stable clusters of green high-environment can
be observed in the grid as well.

(a) Environmental status slice at γs and
λ = 4.0

(b) Qualitative clustering at
γs = 0.0048 and λ = 4

(c) Cluster number log-log scale
at γs = 0.0048 and λ = 4

(d) Environmental status log-log
scale at γs = 0.0048 and λ = 4

Fig. 11: Dynamic action preference, linear neighborhood ac-
tion prediction, single radius neighborhood, and random social
pressure weights for all agents

If we once again look at the cluster number around the
critical point λ = 0.0048 and γ = 4.0 in Figure 11c, we
observe possible scale-free behavior from xmin = 70 onward
with a statistically significant p-score approaching 0.00. By
plotting another distribution over environmental status, we see
an even closer fitting p-score approaching 0.00 with xmin =
0.31.

C. Comparison with the mean-field model
Our mean-field analysis indicated that — if the underlying

assumptions were well-founded — convergence to stable equi-
libria is guaranteed and well-defined solely by the expected
peer pressure coefficient (w) and rationality parameter (λ). The
results presented earlier in this section show a clear deviation
from this indication.

First, while the PAWN sensitivity analysis (Figure 3) re-
vealed a moderate primary effect of rationality on mean
equilibrium environment state, it also indicated similar-level
influences from the system size, as well as agent and environ-
ment adaptation rates. The latter two are of particular interest.
Since equilibria are defined by zero derivatives in environment
and agent actions, an equilibrium state which is sensitive to
these parameters is indicative of both path-dependence in the
steady-state, and the potential for more equilibria than possible
in the mean-field model.

This discrepancy is (at least partially) explained by the
clustering results observed in Figures 10 and 11, solidifying
regions of consistent behaviour, locked in place by locally-
experienced social norms. Such behaviour is not possible in
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the mean-field model given its base assumptions. Overall, the
results in this section allude to the presence of complex local
behaviour arising from the interactions between social norms
and the coupled human-dynamic system.

VI. Conclusion
This model attempts to bridge a research gap [2], [3]

observed in the study of feedback between environmental
status and agent actions, with the aim of better representing
how diverse individual decision rules, social influences, and
dynamic risk perceptions jointly determine collective environ-
mental outcomes.

The model operationalizes the Theory of Planned Be-
haviour, balancing environmental preferences, social pressures,
and perceived action feasibility through the use of dynamic
risk-perception thresholds, predictive neighborhood influences,
and heterogeneity in agent behaviors.

Through comprehensive sensitivity analysis using the
PAWN method, it was found that memory size primarily
influences mean environment and peak frequency, while mean
action and pluralistic ignorance are most affected by recov-
ery rate. Cluster count and dominant frequency power are
significantly shaped by the adaptation rate, whereas spatial
parameters such as neighborhood radius and grid length show
minimal influence in any measured outcome.

Phase plot analysis revealed complex and dynamic system
behaviors, including noisy periodic behavior in the base model
which was dampened by the addition of the linear neigh-
borhood predictor. The dynamic action preference revealed
parameter-dependent oscillations and transitions between vari-
ous system states, from stable to unstable oscillations and con-
vergence to both zero and non-zero equilibria within separate
distinct zones.

The research also provides evidence of criticality and
tipping-point behavior where the model sees neutral equi-
librium, environmental collapse, and a rapid transition to a
healthy state when both rationality and memory exceeded
certain thresholds. Around these critical points small changes
lead to large shift in system-wide behavior, while simulations
around these points exhibit possible scale-free clustering be-
havior.

Every component of this model is an attempt to define be-
haviors that are observed in the real world. Where individuals
become complacent with a good environment and pessimistic
in a bad one. Where friends and family influence the desire to
act to the detriment or benefit of ourselves. An Agent-Based
Model then provides a broad view of the chaos created by
these interacting systems and individual preferences. But even
in this chaos do unique structures form, creating equilibrium,
oscillation, stochasticity, and clustering from the simple act of
individual interaction.
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Appendix A
ODD+D Implementation Details

A. Overview
1) Purpose and Entities: The model explores how individ-

ual decisions to adopt pro-environmental behaviors are shaped
by environmental feedback and social norms, where agents
are arranged on a 2-D grid and repeatedly choose between
positive and negative environmental actions. Each agent has an
adaptive behavioral preference, observes a local environmental
state, and is influenced by their prediction of neighbors’ past
actions.

2) Process and scheduling: Simulations run in discrete
time-steps that each follow these specific steps:
(a) Environment Update: Agents’ environments evolve based

on prior actions, using a user-definable function.
(b) Behavioral Adaptation: Agents update their weight placed

on positive or negative action in response to environ-
mental conditions. Willingness to take positive action
changes more strongly when the environment is neither
fully degraded nor fully healthy.

(c) Prediction of Neighbors’ Actions: When enabled, agents
estimate future neighbor behavior using linear or logistic
prediction and a specified amount of memory of neighbor
actions.

(d) Decision: Agents select actions probabilistically based
on their updated willingness to take positive or negative
action and predicted social norms, as defined in the logit
equation.

B. Design concepts
1) Theoretical Basis and Decision Making: The model

builds on theories of bounded rationality and norm-driven
behavior, making decisions using a probabilistic logit model
based on each agent’s support and the predicted behavior of
their neighbors.

2) Agent Learning, Sensing, and Predicting: Agents sense
their environment and recent neighbor actions, adjusting their
tendency for action depending on environmental quality, taking
more positive action in moderately degraded settings and less
at environmental extremes. Agents also sense their neighbors’
actions and retain a specified memory of those actions to
predict overall neighborhood behavior using recent trends.

3) Interaction: Agents interact with each other in a Moore
neighborhood. The neighbors’ actions are taken into consider-
ation when an agent is trying to maximize its expected utility
(as shown in Equation 1). An agent also directly interacts
with the environment in it’s assigned location on the lattice
by choosing an action that is dependent on the current state
of the environment.

4) Heterogeneity: Each agent in the model has an indepen-
dent preference for climate action. An agent also adapts its
behaviour dependent on the state of the environment at its po-
sition in the lattice. In experiments with heterogeneous social
influence, each agent’s peer-pressure coefficient is initialized
by sampling independently from a Uniform(0, 1) distribution,
thereby seeding behavioral diversity.

5) Stochasticity: Stochasticity in the model is introduced
primarily through agents’ action choices, which are drawn at
each time step from a logit (softmax) distribution (Equation 2)
over their computed utilities. All results are obtained via
multiple Monte Carlo replicates, each with a fresh random
seed, to ensure that observed patterns reflect the variability
induced by these stochastic processes.

6) Collectives: All agents are part of a neighborhood, and
the action level of the neighborhood affects the environmental
state of a given cell. Clusters of healthy or degraded environ-
ment form as a result of agent interaction with its neighbors
and its environment. Cluster formation is an emergent property
of the model.

7) Observation: Time-series data for the environmental
state and agent action is collected for many different parameter
sets to analyze model behaviour. Some of the recorded met-
rics are: mean environment and action, pluralistic ignorance,
spatial cluster counts and size distributions, and oscillation
characteristics via Fourier analysis. These measurements are
used to validate the observed model dynamics with theoretical
expectations.

C. Details
1) Parameters: Experimental parameters listed in Table II.

Parameter Description Values

N Number of agents 30 × 30
λ Agent rationality [0, 6]
γs Action preference rate of change [0.001, 0.02]
b1 Weight on environmental concern Uniform 1.0
b2 Weight on social norms Random [0.0, 1.0]

and Uniform 1.0
s(t) Initial support for cooperation Uniform 1.0
T Simulation duration (timesteps) 1000
m Memory length (steps) 10
r Radius of local neighborhood 1 or Mean-field
env_up_fn Environmental update function linear or

exponential
env_adap Calculation of environment change linear or adaptive
prediction Neighbor behavior prediction None or linear
repeats Simulation repeats per condition 10 − 100
moore Moore Neighborhood Option True

TABLE II: Model Parameters Used in Simulation Experiments

2) Implementation and Initialization: The model is imple-
mented as both an object-oriented and vectorized agent-based
simulation in Python, using a 2-D spatial grid where each
cell represents a single agent who continuously chooses be-
tween improving or impairing their environment. The object-
oriented model emphasizes modularity and ease-of-use, while
the vector-based model emphasizes efficiency for large-scale
experimentation — the vectorized model contains all of the
most recent changes, so focus will be placed on that.

As opposed to the object-oriented method, the vectorized
model encodes agents as rows in a structured array instead of
as individual objects, where each array stores one attribute of
the individual agent across multiple time steps, including ac-
tions, environmental states, or parameter values. This structure
allows for vectorized operations, in which entire populations
are updated in a single step using high-performance libraries
like NumPy and SciPy.
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3) Submodels:
(a) Environmental Update Dynamics: Either linear or piece-

wise exponential.
(b) Environmental Action Dynamics: Driven by nonlinear

response to environmental quality.
(c) Local Action Prediction: Predict neighbor actions using

linear or logistic regression.
(d) Decision Model: Logit-based decision making between

positive and negative action.
4) Experiments: Systematic experiments were conducted

on every combination of the parameters specified in Table II
and plotting γs and λ on heatmaps of different output values,
including mean environmental status, number and size of
clusters, and Fourier analysis of cyclic behaviors.

General behavior of the system was identified with the
heatmaps and then isolated into slices of specific continuous
parameter values to find the steepest critical point for qual-
itative phase transitions. Using the specific parameter value
identified at the critical point, plots of model outcomes over-
time were created to observe behavior before, after, and at
the critical point. These results can then be compared to the
mean-field approximation to observe differences caused by the
model implementation.

Appendix B
Mean-Field Derivations

A. Expected agent action
Consider the action probability as defined in Equation 2. By

expanding the representative utility and simplifying, we can
eliminate any terms not dependent on a (the specific action).
For clarity, we omit the t superscripts on at

i and st
i:

Vi(a) = (1 − wi)[2 + (si − 2)a] − w(a − ai)2 (8)
= (1 − wi)(2 + sia − 2a) − w(1 − 2aai + ai

2) (9)
= [2(1 − wi) − w(1 + ai

2)] (10)
+ a[(1 − wi)(si − 2) + 2wai] (11)

Taking zi = (1 − wi)(si − 2) + 2wai, we derive agent i’s
expected action:

E[ai] = P(ai = C) − P(ai = D) (12)

= exp(λzi) − exp(−λzi)
exp(λzi) + exp(−λzi)

(13)

= tanh(λ(1 − wi)(si − 2) + 2λwai)) (14)

B. Expected mean action
To obtain an expression for the population-level expected

action, we first make the following simplifying assumptions:
1) The heterogeneous wi attributes assume their expected

value, wi = w.
2) Agents’ adapt sufficiently fast, such that their action prob-

ability — and thus action preferences — are stationary.
3) For any pair of agents, their action probabilities are

independent (the mean-field assumption).
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Fig. 12: Graphical solutions (fixed points) of the average
action mean-field equation for two levels of initial support for
cooperation (top) s = 2.0 and (bottom) s = 3.0 for varying
levels of social-norm coefficient (w) and rationality (λ).

Taken together, these assumptions imply that ai = m for each
agent i ∈ N , where m is the population-level expected action,
and wi = w, si = s. Thus, the expected mean action is:

m = E

[
1
k

k∑
i=1

ai

]
(15)

= 1
k

(E[a1] + · · · + E[ak]) (16)

= 1
k

· k · E[ai] (17)

= tanh(λ(1 − w)(s − 2) + 2λwm) (18)

The fixed-point equation is illustrated with varying w, λ, s in
Figure 12. Equation 18 has between 1 and 3 solutions. We
now characterize the necessary and sufficient conditions for
three solutions to exist. Rewriting Equation 18 as a fixed-point
problem f(m),

f(m) = g(m) − m (19)
g(m) = tanh(λ(1 − w)(s − 2) + 2λwm) (20)

we observe that f(m) = 0 can have three solutions, only if
g′(m) > 1 for some m ∈ [−1, 1]. This condition is satisfied
when:

1 < g′(m) = sech2(λz) · 2λw ≤ 2λw (21)

Thus for three solutions to exist, it is necessary that 1
2λw < 1,

i.e., individual rationality and the influence of social norms
must be sufficiently high. Now observe that for multiple
solutions to exist, it is sufficient to show that:

1) f has two turning points within the domain m ∈ [−1, 1],
and that
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2) These correspond to expected actions m∗
1, m∗

2 which lie
below and above the diagonal, respectively.

With f ′(m) = 2λw · sech2(λz) − 1, the turning points are
given by:

m∗ = − (1 − w)(s − 2)
2w

± 1
2λw

arccosh(
√

2λw) (22)

C. Mean-field dynamics
We derive the temporal dynamics of m by taking the time

derivative of Equation 18:

dm

dt
= (1 − w)λ sech2(λz)

1 − 2λw sech2(λz)
· ds

dt
(23)

Where the mean-field ds
dt is defined by:

1
γs

ds

dt
= β+

s · σ(n)(4 − s) − β−
s · (1 − σ(n))s (24)

Observe that as the denominator in Equation 23 approaches
0, the derivative diverges. This occurs precisely at the
identified turning points of the fixed-point function f . Thus
when 1

2λw < 1, the mean-field model predicts increasing
attraction to the two stable fixed points as they are approached.

Equilibria in the mean-field dynamical system are charac-
terised by mean environment n∗ and action m∗ such that
dn
dt = dm

dt = 0. The temporal environment derivative in the
mean-field model is given by:

1
γn

dn

dt
= β+

n · (1 − n)P(C) − β−
n · nP(D) (25)

Thus the environment is stationary when:

0 = β+
n · (1 − n)−β−

n · nt
i(1 − αt

i) (26)

=⇒ n∗ = β+
n P(C)

β+
n P(C) + β−

n P(D)
(27)

From Equation 23, the expected action is stationary when:

(1 − w)λ sech2(λz) · ds

dt
= 0 (28)

Since sech > 0, we find that dm
dt = 0 when agents are

unaffected by peer pressure, are completely irrational, or when
the mean action preference is unchanging. The latter condition
holds when:

s∗ = 4 · β+
s σ(n)

β+
s σ(n) + β−

s (1 − σ(n))
(29)

Now suppose that n∗ is such that dn
dt = 0. Solving for the

corresponding P ∗
C = P(C), we find:

P ∗
C = β−

n n∗

β−
n n∗ + β+

n (1 − n∗)
(30)

However, from the logit model definition, we also have that:

P ∗
C = exp(λz)

exp(λz) + exp(−λz) (31)

= 1
1 + exp(−2λz) (32)
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Fig. 13: Phase portraits of the mean field dynamics of our
model for varying social-norm coefficient (w) and rationality
level of agents (λ).

Thus we can rearrange for the corresponding steady-state
action preference, s∗:

P ∗
C = 1

1 + exp(−2λz) (33)

1
P ∗

C

= 1 + exp(−2λz) (34)

− 1
2λ

ln
(

1 − P ∗
C

P ∗
C

)
= (1 − w)(s∗ − 2) + 2w ·

2P ∗
C −1︷︸︸︷
m (35)

s∗ = 1
1 − w

[
2(1 − 2wP ∗

C) − 1
2λ

ln
(

1 − P ∗
C

P ∗
C

)]
(36)

Since P ∗
C depends on n∗, by equating Equations 29 and 36,

we obtain a fixed-point problem, whose numerical solution
defines the system equilibria (n∗, s∗). Finally, we recover the
equilibrium expected action as

m∗ = P ∗
C − P ∗

D = 2P ∗
C − 1 (37)

Example dynamics are illustrated for varying parameters in
Figure 13, with red circles identifying the equilibria, and the
dn
dt = 0 nullcline depicted with a grey dashed line.

Appendix C
Power Law Fitting

To determine whether certain quantities in the simulation
follow a power-law distribution, we fit empirical distributions
using the powerlaw Python package [64].
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Power Law Model
A continuous power-law distribution is defined by the prob-

ability density function:

p(x) = Cx−α, x ≥ xmin, (38)

where α > 1 is the scaling exponent, xmin is the lower
bound above which the power-law behavior holds, and C is a
normalization constant.

Given a set of n observations {xi} such that xi ≥ xmin, the
scaling exponent α is estimated via the maximum likelihood
estimator (MLE):

α = 1 + n

[
n∑

i=1
ln

(
xi

xmin

)]−1

. (39)

Determining xmin

To find the optimal value of xmin, the Kolmogorov–Smirnov
(KS) distance between the cumulative distribution function
(CDF) and the fitted power-law model is computed for a range
of xmin. The value that minimizes this distance is selected:

xmin = arg min
x

sup
x≥xmin

|S(x) − P (x)| , (40)

where S(x) is the empirical CDF and P (x) is the CDF of the
fitted model.

Goodness-of-Fit Test and p-Value
To assess the power-law fit, a goodness-of-fit test is done by

simulating the fitted model and computing their KS distances
from the model. The p-value is then calculated as the fraction
of these simulated distances that exceed the empirical KS
distance:

p =
# simulations with Dsim > Demp

# simulations
. (41)

A p-value greater than 0.1 is generally taken to indicate that
the power-law hypothesis cannot be rejected.

Model Comparison
To further validate the fit, we compute the log-likelihood

ratio R between the power-law model and an alternative
distribution (e.g., exponential). The corresponding p-value is
calculated to determine if the observed difference is statisti-
cally significant:

R = log
(

Lpower law

Lalternative

)
. (42)

A positive R indicates that the data are more likely under the
power-law model.
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